Корейские учёные Сокпэ Ли, Чжихун Ким и Янг-Ван Квон заявили об открытии сверхпроводимости при +127°С (400°К).
Корейские учёные Сокпэ Ли, Чжихун Ким и Янг-Ван Квон заявили об открытии сверхпроводимости при +127°С (400°К).
Если открытие подтвердится, наша цивилизация изменится.
Эффект достигнут на свинцово-апатитовом материале, в котором четверть ионов свинца заменили медью. Ли и Ким получили материал в 1999 и назвали его LK-99 по первым буквам своих фамилий и последним цифрам года.
Сверхпроводящий образец LK-99 парит над магнитом
В марте 2023 года ученые получили патент на LK-99, в апреле была опубликована статья в корейском журнале, но она была на корейском языке и прошла незамеченной. Только 23 июля был опубликован препринт на ArXiv.org (ссылка в конце поста). Сейчас ученые разных стран лихорадочно пробуют повторить эксперимент.
Авторы не были широко известными учёными, впрочем в исследовании сверхпроводимости новичкам часто везло на счастливые случайности.
Сверхпроводимость случайно открыл голландец Хейке Каммерлинг-Оннесом в 1911 в лаборатории в Лейдене. Ученый измерял электрическое сопротивление ртути при снижении температуры. Сопротивление плавно снижалось и вдруг при температуре около -270°С сопротивление упало вообще до нуля. Просто до нуля и всё… При сверхпроводимости сопротивления нет вообще. Мне рассказывали, что в Лейденской лаборатории до сих пор хранится кольцо с током, который включили в 1927 году. Батарею убрали, а ток крутится уже почти 100 лет. Может крутиться вечно, потерь никаких.
Следующие 75 лет ученые строили теорию сверхпроводимости и искали материалы с более горячей точкой перехода. Большой вклад внесла группа Гинзбург-Ландау-Абрикосов-Горьков (теория ГЛАГ), а основной стала теория Бардина-Купера-Шриффера (БКШ). Точку перехода за 75 лет удалось повысить лишь на двадцать градусов. Было опубликовано много работ серьезных ученых, теоретически доказывающие невозможность сверхпроводимости при температурах выше минус 250°С.
Как вдруг в 1986 два швейцарских ученых Мюллер и Беднорц нашли сверхпроводник при температуре минус 238°С. Ученые были неизвестные, работали в маленькой лаборатории фирмы IBM в Цюрихе, про которую научная общественность не слыхала. Материал был керамикой, которая раньше не исследовалась на сверхпроводимость. Та самая керамика, из которой можно тарелки делать. В 1987 Мюллер и Беднорц получили Нобелевскую премию.
Ученые всего мира ринулись экспериментировать с керамикой. Я помню забитую до отказа Центральную Физическую аудиторию физфака, где рассказывали про «тёплую сверхпроводимость». В течение года ученые подняли температуру сверхпроводников ещё на 100 градусов до минус 140°С. В следующие годы рост температуры замедлился. Последний рекорд был в 2019 −23 °C (250K), но под большим давлением (188 ГПа). Для широкого применения не подходит. Теория БКШ не может объяснить теплую сверхпроводимость в керамиках, полная теория высокотемпературной сверхпроводимости до сих пор не построена.
И вот - сообщение о прорыве корейцев сразу до плюс 127°С при атмосферном давлении. Это открывает огромные возможности.
Зачем вообще нужна сверхпроводимость? Думаете, чтобы снизить потери при передаче энергии по проводам? Вряд ли. Сверхпроводящие материалы как правило слишком дороги и сложны в обработке для проводов ЛЭП.
Основное применение сверхпроводников - для катушек, создающих мощное магнитное поле. Поэтому важно, что помимо высокой температуры корейский материал LK-99 показал устойчивость сверхпроводимости к высокому магнитному полю.
Применение горячих сверхпроводников может помочь созданию термоядерной электростанции на ТОКАМАКе (ТОроидальная КАмера с МАгнитными Катушками), где очень мощное магнитное поле, удерживает очень горячую плазму. Я уже давно считал, что мы никогда не увидим коммерческую термоядерную электростанцию, но на горячих сверхпроводниках такая станция может стать возможной. Правда, лет через 30-50, не раньше, но шанс есть.
Другим возможным применением может стать магнитная левитация - полёты на магнитной подушке. В фильмах типа «Назад в будущее» или «Звездные войны» разные устройства парят в воздухе без затрат энергии. Вряд ли ученые освоят антигравитацию, а вот парение в магнитном поле было открыто ещё в 1933 Вальтером Мейснером. Это явление называют также «эффектом Магомета» - по преданию гроб Пророка в Медине вечно висит в воздухе между небом и землей. А вдруг там мощный горячий природный сверхпроводник? ) Проверить невозможно, доступа к гробнице Мухаммеда нет, саудовские богословы запрещают поклонение гробницам.
Если бы LK-99 оправдал ожидания, поезда МагЛев на магнитной подушке стали бы гораздо экономичнее и дешевле. Да и ГиперЛуп Илона Маска обрел бы второе дыхание.
Поезд МагЛев “CRRC 600” Китай. Скорость 620 км/час. Начало эксплуатации 2025 год
Для летающих автомобилей пришлось бы прокладывать сверхпроводящие контуры под дорогами, что маловероятно, но сверхпроводники могли бы окончательно зафиксировать победу электромобилей над двигателями внутреннего сгорания. Сверхпроводники могут работать как накопители энергии. Ток закачивается в сверхпроводящее кольцо, а потом оттуда забирается. Насколько я понимаю, подобное устройство вполне возможно.
Есть и другие применения: в МРТ, квантовых компьютерах.
В конце статьи авторы написали: «Мы верим, что наша работа станет историческим событием, которое откроет новую эру для человечества».
Оптимистично…
Ждём подтверждения открытия.
ЛИТЕРАТУРА:
1. “The First Room-Temperature Ambient-Pressure Superconductor” Sukbae Lee, Ji-Hoon Kim, Young-Wan Kwon
Когда будет коммерческий термояд? Почему температура в реакторе должна быть в 10-20 раз больше, чем на Солнце? Какие проблемы сейчас на проекте? Интервью с инженером и ученым Виталием Красильниковым, работающим в ITER более 10 лет.
Виталийродом из подмосковного Троицка. В данный момент находится во Франции под Марселем в непосредственной близостиот главной стройки, где курирует разработку нескольких нейтронныхдиагностик.
# …если вы предпочитаете видео тексту – в конце поста есть ссылка на полную версию интервью на YouTube.
- В чем основная фишка термояда?
Во-первых, на входе у нас, по сути, безлимитное топливо. Топливом для той термоядерной реакции, о которой мы сегодня говорим, является дейтерий и тритий — изотопы водорода. Дейтерий доступен в мировом океане, его можно выделять из морской воды. Тритий в природе не встречается. У него короткое время полураспада. Но его можно производить из лития. Это деньго- и трудозатратно, но это тоже, можно сказать, бесконечное топливо.
- Почему до сих пор нет реактора, который давал бы полезную энергию?
Проблема в трудностях организации самого процесса реакции. Как сделать такую установку, которая в достаточном объеме произвела бы необходимое количество реакций и тем самым произвела бы необходимое количество энергии? Токамаки начинались с каких-то настольных приборов, переходили в комнатные, потом занимали половину здания. И сейчас мы строим токамак размером с семиэтажное здание. Размеры растут. Это важно.
Для того, чтобы пошла реакция, нам нужно некую субстанцию — назовем это газом, а на самом деле это плазменное образование — нагреть до очень высоких температур. При таких температурах никакие стенки не смогут выдержать. Поэтому нам нужно ее удерживать другими способами. Была создана конфигурация с удержанием плазмы магнитным полем.
Представьте какую-то полоску воды. Вы снизу дуете струйками воздуха и пытаетесь ее удержать. А гравитация эту воду пытается прижать к земле.
Это очень сложно сделать. Вода постоянно будет стараться искать где-то лазейку. Так и плазма. Потому что веществу неудобно, невыгодно находиться в каком-то энергетическом состоянии. Ему всегда хочется остыть, отдать свою энергию, успокоиться. А мы, наоборот, пытаемся удержать этот процесс, этот огонь, чтобы он горел и давал нам пользу.
Ну и просто из-за технических, физических в том числе, сложностей самого процесса.
- На Солнце идут те же самые термоядерные реакции — горит водород, синтезируется гелий — но нам нужно достичь температур в 10-20 раз больше, чем на Солнце. Почему?
Я могу ответить шуткой: солнце неэффективно, мы строим что-то более эффективное.
В этом есть доля правды. Зачем нам нагревать именно до той температуры, о которой говорится? На этих энергиях имеется пик сечения взаимодействия дейтерия и трития. При таких температурах наибольшая вероятность реакции этих двух изотопов. Если температура ниже, они летают мимо друг друга и не реагируют. Если температура выше, они слишком горячие, и тоже пролетают мимо. Так получилось в природе, что, если вещества имеют эту температуру, у них максимальное количество реакций происходит.
- Чем крут ITER кроме того, что это самый большой токамак?
Если со стороны физики посмотреть, принципиальное отличие от предыдущих установок в том, что в ITER планируется осуществить контролируемое горение. Что подразумевается под этим термином? Горение — это когда ты в огонь положил дрова, и он сам горит, ему ничего не нужно. Так же и в плазме. Если ты создал ей какую-то конфигурацию, то она сама себя может поддерживать. Она сама производит достаточное количество энергии для того, чтобы поддерживать свою температуру на том же уровне и продолжать находиться в этом квазистационарном состоянии.
До этого все предыдущие токамаки, включая ныне действующие, выходили на мощность порядка единицы-полтора. Это коэффициент полученной мощности к затраченной, то есть, когда мы получаем энергии столько же либо чуть-чуть больше, чем затратили. И это уже горение, но оно происходило доли секунды или порядка нескольких секунд.
- А как будет работать реактор? Это какие-то периоды-вспышки в несколько минут, когда плазма зажигается, потом затухает, потом все повторяется?
Именно так. Установка токамак, про которую мы сегодня говорим, тороидальная камера с магнитной катушкой — это принципиально импульсная установка. Импульс может быть очень долгим. 500 секунд, про которые мы говорили чуть ранее — это работа установки с высокой мощностью. Еще предполагаются режимы на 3 000 секунд с чуть более низкой мощностью. Но это в любом случае ограниченное время.
Почему? Потому что вихревое магнитное поле, которое создается в токамаке, создается путем наращивания тока через соленоид. У нас поле создается, когда изменяется ток. Мы, например, его увеличиваем — и поле закручивается. То есть не просто ток идет и поле появляется, а именно увеличивается.
- Каким образом будет сниматься энергия с токамака?
Существует несколько подходов. Первый — аналогичный с атомными станциями, когда мы банально греем воду. Реактор производит гелий и нейтроны. Нейтроны прекрасно взаимодействуют с водой. У них огромное сечение взаимодействия с водородом. Можно «обложить» реактор достаточным количеством воды. Она замедлит нейтроны и защитит от них, и сама нагреется. Дальше — турбина или всевозможные способы применения энергии воды.
Есть еще альтернативные способы. Поскольку у нас есть источник нейтронов, можно обложить установку ураном — это я очень условно говорю; не просто обложить, а ввести в уравнение уран — тогда нейтроны будут реагировать с ураном, производить атомную реакцию и у нас получится гибридный реактор, термоядерный и атомный в одном флаконе.
- Возможно ли, что какие-то коммерческие термоядерные проекты будут разрабатываться параллельно с экспериментами на ITER?
Думаю, что очень вероятно. Азиатские страны, мы видим, очень в этом заинтересованы. Уже сейчас строятся системы крупного размера, которые будут отрабатывать разные особенности, например, выход на долгие разряды, поддержание высокой мощности на длительное время. Это принципиально важно для коммерческого реактора.
И я думаю, что параллельно с ITER будут и должны строиться машины, установки коммерческие или околокоммерческие, уже с положительным выходом.
- Не получится ли так, что они опередят ITER?
Да, и это будет здорово. Тут нет какой-то конкуренции. Она есть, конечно, психологическая: «мы первые — они первые». Но в целом мы делаем это для человечества. И, работая здесь, ты постоянно пересекаешься со всеми национальностями, с гражданами разных стран практически со всей планеты. Никто на себя одеяло не перетягивает. И, если кто-то начинает это делать, это выглядит глупо. Мы работаем вместе на благо человечества. Это очень ощущается.
Допустим, Китай или Корея построили свою машину, которая заработала также, как ITER. Отлично. Но вот Корея это сделала. А в России нет доступа туда. У Японии нет доступа. У США нет. У Европы, Франции, Германии нет туда доступа.
По крайней мере, ITER как бы общий, но в то же время он свой для каждого из партнеров. Каждый имеет доступ к полному объему информации и ноу-хау, ко всем чертежам, ко всем моделям и так далее. Каждый партнер имеет полное право взять это и при желании построить у себя. Это часть идеологии проекта.
- А как вообще в непосредственной близости друг от друга могут располагаться самая горячая точка в галактике в 100-150 млн градусов и самая холодная?
Специальные материалы, специальная теплоизоляция одного от другого. На расстоянии примерно шести метров действительно будет две точки: одна — самая горячая в галактике, вторая — самая холодная. Самая холодная — это 4 К (-269 0С). И самая горячая, надеемся — 100-150 млн градусов.
Для чего нужна холодная температура? Для проводника, из которого намотаны катушки, создающие магнитное поле. Эти катушки переходят в режим сверхпроводимости. В них уменьшаются потери. Поэтому мы можем гонять по ним огромный ток без потерь.
Катушка диаметром примерно 3-5 см упаковывается в пакет теплозащиты. Потом еще теплозащита. В итоге получается кубик примерно 1,5 метра – из проводника и теплозащиты.
- Хочу спросить про людей. У вас же интернациональная команда, но, наверное, большинство французы?
Французов в проекте много, четверть или треть. Какой-то статистики нет. Может, она есть, но я не знаю. А остальных примерно по 7-10%: Россия, США, Индия, Япония, Корея, Китай. Европа вкладывает 40%. Имеется в виду и финансовый вклад, и натуральный вклад, в том числе люди. Из Европы — большинство. Наиболее представлены французы, испанцы, немцы, Северная Европа, Польша, Румыния.
Все общаются, работают.
- Насколько хорошо финансируется проект? Каковы зарплаты в сравнении с другими институтами или проектами? И какова разница со среднеевропейской зарплатой? Это хорошо оплачиваемая работа?
Да, скорее, хорошо оплачиваемая. Естественно, есть градация от начального уровня работников до дирекции. Это все открытая информация, она есть на сайте проекта. Разница в зарплатах в два или в три раза.
Наверное, для России нормально, когда в 100 раз у директора выше зарплата, чем у уборщицы. Но здесь — нет. У директора в четыре раза выше зарплата, чем у уборщицы. Или в три. Примерно так.
Однако надо понимать, что и расходы высокие: цена аренды жилья, цена топлива – машину заправить, цена еды — цена всего примерно в 1,5-2 раза выше. Просто сходить в продуктовый магазин здесь дороже.
Второй момент, что ты в отрыве от своей страны. И это накладывает некоторые ограничения. Например, нужно решать какие-то жилищно-коммунальные вопросы. Кран потек. И если где-то в Троицке я знал, где дядю Васю позвать, и за условные 200 рублей он кран бы починил, то здесь ты обращаешься к каким-то официальным фирмам, которые всегда дороже. Помните, в советское время было, что «цена для иностранца другая». Может быть, в Париже, где много иностранцев, это нормально, а здесь в деревне иностранцу жить дороже.
И еще французская налоговая система и социальная система очень нацелены на поддержку и уравнивание. Если у тебя низкая зарплата — меньше 2 000 евро чистого дохода в месяц, например 1 500 или 1 000 — то тебе государство очень сильно поможет со всеми расходами, начиная от билетов на еду, на продукты, заканчивая тем, что если у тебя дети, то школа будет либо дешевле, либо бесплатно, всякие субсидии на ЖКХ.
Для нас этого всего нет. У нас высокая зарплата и высокие расходы.
- Ты сам веришь, что мы когда-нибудь увидим коммерческий термояд?
- Как ты думаешь, в каком примерно году появятся коммерческие реакторы?
Я стараюсь об этом не думать. Если серьезно, то, наверное, где-то в районе 2050-2060 года. С тем темпом, который сейчас идет. Мы старались политику не обсуждать. Но темпы в разные годы разные. И иногда кажется, что все идет к ускорению, иногда кажется, что все пойдет к замедлению
Но если продолжится какая-то похожая тенденция, то прицел на 2050-2060-е годы.
Я думаю, что темп через 10-20 лет изменится. В районе 2030-го мы можем увидеть, что темп увеличится и, возможно, к 2040-ому увидим коммерческие станции. По крайне мере, после 2030-х, когда ITER, я надеюсь, будет работать в полную термоядерную мощность, будет уверенность, что эта технология работает. И тогда многие государства заинтересуются в применении этой технологии у себя.
В нем есть простое икраткое объяснение сути термоядерного синтеза, откуда берется энергия и какустроен ИТЭРовский токамак.